

Determination of the Geographic Origin of Spices Using Elemental Analysis after Microwave Digestion

Introduction

Competitive advantage within the food industry has lead to fraudulent activities like intentional counterfeiting. substitution, mislabeling/ adulteration. or misrepresentation of ingredients within products. Many of these tricks go unnoticed by consumers and regulating government agencies due in part to the lack of standardized methods for identification. This highly specialized problem results in inferior products entering the marketplace and skewing price points for legitimate goods. One good example of this is Madagascar vanilla, price per kilo has vaulted from \$47 in 2012/13 to \$385 in 2016/17. This leads to potential counterfeiting and substitution from actors/criminals in the food bad industry. For origin-driven products like spices, food fraud has highlighted the need for ways to defend claims of geographic origin. This study uses three different technologies; microwave digestion, ICP-OES, and ICP-MS, to determine if spice origin from different countries could be accurately distinguished. Spice samples were sourced from a large US importer of spices that can verify the country of origin. The results of this study demonstrate the validity and applicability of the analytical approaches used.

Experimental

Samples. Over 50 spices from around the world were used in this study. All acquired from a Business-to-Business spice company in the US.

Sample Preparation. All spice samples were digested in a MARS 6 with MARSXpress Plus Vessels.

Experimental

Figure 1: MARSXpress Plus vessels (left). Spices and the vessels (middle), group photo (right).

"Plant Material" One Touch Method MARSXpress Plus Vessels								
Stages	1	Run - Plant	Material () 🛞					
Power	290 - 1800	Time 14:59 Temperature 1997C ili Time Colley Time Tea ili Vanih						
Ramp Time	20:00		000 € 000 € 000 000					
Hold Time	10:00		0 5 10 15 20 25 30 Time (min)					
Temperature	200 °C	⋒ ⊛	11:44 AM 🔅					

Digested samples were then prepared for elemental analysis:

- Samples were roughly 100x dilution (0.5g into 50mL).
- Final concentration was approximately 20% acid (samples were digested in 9mL HNO3 and 1mL HCl, for a final acid concentration 18%HNO3 and 2%HCl).

Instrument parameters. An Agilent 7900 ICP-MS with the Ultra High Matrix Introduction (UHMI) system was used. The sample introduction system consisting of a micromist concentric nebulizer, quartz spray chamber quartz torch with 2.5 mm id injector, and platinum cones.

The 5110 ICP-OES sample introduction system consisted of a SeaSpray nebulizer, double-Pass cyclonic spray chamber, and a 1.8 mm id injector torch.

Instrument operating conditions are listed in Table 2.

Table 2. ICP-MS/ICP-OES instrument operating conditions

	-			
ICP-MS Parameter	Setting	ICP-OES Parameter	Setting	
RF power (W)	1600	RF power (kW)	1.20 kW	
Sampling depth (mm)	10	Auxiliary gas flow (L/min)	1.0 L/min	
Carrier gas flow (L/min)	0.68	Plasma gas flow (L/min)	12.0 L/min	
Dilution (HMI) gas flow (L/min)	0.27	Nebulizer gas flow (L/min)	0.7 L/min	
Helium cell gas flow (mL/min)	4.3	Viewing mode	Axial/Radial	
Hydrogen cell gas flow (mL/min)	5	Replicate Read Time (s)	30 sec/5 sec	
Energy discrimination (V)	4	Viewing height (mm)	12 mm	
		Switching Valve	AVS7	

SRMs Various Reference Standards. from National Institute of purchased Standards and Technology (NIST) were analyzed in this study to verify the sample preparation digestion process. NIST 1573a Tomato Leaves, NIST 1515 Apple Leaves, and NIST 1575 Pine Needles.

Samples and Sample Preparation. 50+ spices were obtained from a spice company that does B2B sales. They sourced all of the spices, and therefore know the true country of origin. This is very important when doing authentication studies. The samples were digested following the same procedure as for NIST SRM samples. About 0.5 g of each sample was weighted into 50 mL microwave vessels.

Results and Discussion

To verify the digestion process of the spice samples, four SRMs were analyzed by ICP-MS and ICP-OES. The mean results shown in Table 3 were in good agreement with the certified concentrations, where provided.

ICP-MS & ICP-OES (in Italics)	S NIST 1573a Tomato Leaves				NIST 1575 Pine Needles				NIST 1515 Apples Leaves			
Element (mass and wavelength)	Certified conc	Mean Measure d conc*	Recovery **	QC Criteria (80- 120%) ***	Certified conc	Mean Measure d conc*	Recovery **	QC Criteria (80- 120%) ***	Certified conc	Mean Measure d conc*	Recovery **	QC Criteria (80- 120%) ***
²³ Na	136	111	82%	PASS	63 ^R	59	94%					
²⁴ Mg (279.078 nm)	12000 ^R	11390	95%	PASS	1060	887	84%	PASS				
²⁷ Al (396.152 nm)	598	476	80%	PASS	580	537	93%	PASS				
³⁹ K (769.897 nm)	27000	28718	106%	PASS	4170	4209	101%	PASS				
⁴⁴ Ca (315.887 nm)	50500	49844	99%	PASS	2500	2475	99%	PASS				
⁵¹ V	0.835	0.687	82%	PASS					0.254	0.266	105%	PASS
⁵² Cr (205.560 nm)	1.99	1.70	86%	PASS								
⁵⁵ Mn (257.610 nm)	246	240	98%	PASS	488 ^R	504	103%					
⁵⁶ Fe (239.563 nm)	368	359	97%	PASS	46	47	102%	PASS	82.7	72.2	87%	PASS
⁵⁹ Co (238.892 nm)	0.57	0.52	91%	PASS	0.061 ^R	0.065	106%					
⁶⁰ Ni (216.555 nm)	1.59	1.44	91%	PASS	1.47 ^R	1.49	101%		0.936	0.774	83%	PASS
⁶³ Cu (324.754 nm)	4.7	4.0	85%	PASS	2.8	3.0	107%	PASS	5.69	4.79	84%	PASS
⁶⁶ Zn (213.857 nm)	30.9	25.5	82%	PASS	30.9	36.7	119%	PASS	12.45	10.40	84%	PASS
⁷⁵ As (188.980 nm)	0.112	0.119	106%	PASS	0.039 ^R	0.032	83%					
⁷⁸ Se (196.026 nm)	0.054	0.061	113%	PASS	0.099 ^R	0.103	104%					
⁸⁵ Rb									10.2	8.65	84%	PASS
⁸⁸ Sr									25.1	23.6	94%	PASS
⁹⁵ Mo (202.032 nm)	0.46 ^R	0.39	85%						0.095	0.078	82%	PASS
¹⁰⁷ Ag	0.017 ^R	0.013	75%									
¹¹¹ Cd (226.502 nm)	1.52	1.31	86%	PASS	0.233	0.227	97%	PASS	0.0132	0.0116	88%	PASS
¹³⁷ Ba (455.403 nm)	63 ^R	58	92%		6	6	100%	PASS	48.8	47.4	97%	PASS
²⁰¹ Hg	0.034	0.037	108%	PASS					0.0432	0.0493	114%	PASS
²⁰⁸ Pb					0.167 ^R	0.166	99%		0.47	0.44	94%	PASS
²³² Th	0.12 ^R	0.10	80%									
²³⁸ U	0.035 ^R	0.023	64%									
*n=3, replicate samp ** FDA Elemental Ar *** QC Criteria FDA I ^B Non-Costified Pote	ole digestio nalysis Ma EAM 4.7 (8 roppo Volu	on, each ir inual (Sect 30-120%) f	triplicate tion 3.4 Spe for NIST ce	ecial Calcu ertified val	ulations) 3 ues	.4 Equatio	n 20					

Lindsey Whitecotton^{1,} Greg Gilleland¹, Jenny Nelson¹⁻³, Courtney Tanabe^{2,3}, Elaine Hasty⁴, Leanne Anderson⁴,

Agilent Technologies, Inc., 5301 Stevens Creek Blvd, Santa Clara, CA 95051 ²Food Safety and Measurement Facility, University of California, Davis, One Shields Ave., Davis CA 95616 Department of Viticulture and Enology, University of California, Davis, One Shields Ave., Davis, CA 95616 ⁴CEM Corporation, 3100 Smith Farm Road, Matthews, NC 28104

Pittcon 210-46

Results and Discussion

Spike Recoveries. Spike recovery test was carried out to check the accuracy of the ICP-MS and ICP-OES methods for actual sample analysis. Four random spice samples were spiked with all elements were spiked at 20 and 60 ppb.

Recoveries were between 82% (for Ba) and 119% (for Cu). Quantitative results for the spice samples showed that the concentrations of Al, K, Ca, Mg Na, Fe, P, S, Si, Zn and Mn, were relatively high in all spiked spice sample. Using the 7900 ICP-MS and 5110 ICP-OES direct analysis methods, excellent spike recoveries were achieved for most elements in the spiked samples. All recoveries were within ±20% as shown in Table 4. The spike results for the elements listed above were invalid as the spike levels were much too low (20 times lower) relative to the levels present in the unspiked samples, therefore NA.

Table 4. Quantitative and spike recovery results for 4 spice samples.

	White Pepper Sample 58	White Pepper Sample 45	Paprika Sample 24	Basil Sample 50	ICP	-MS	ICP-OES	
Element (mass and wavelength)		Measured co	onc, n=3, ppb	Mean Recovery*± 1σ	QC Criteria (80-120%) **	Mean Recovery*± 1σ	QC Criteria (80- 120%)**	
¹⁰⁹ Ag (328.068 nm)	2.5	6.0	5.3	11.5	106 ± 7%	Pass	107 ± 8%	Pass
Al (396.152 nm)	12863.3	35208.9	1022222.2	1290444.4	NA	NA	NA	NA
¹³ As (188.980 nm)	62.5	/.3	114./	298.8	104 ± 2%	Pass	116 ± 10%	Pass
¹³⁷ Po (614 171 pm)	21288.9	4204.0	38800.0	18338.9	92 ± 235%	Pass	84 ± 40%	Pass
9 Ba (014.1711111) 9 Ba (212.042 pm)	9700.9	2203.3	32433.3	31057.8	100 + 19	Pass	82 ± 20%	Pass
Ca (317 933 nm)	4074444.4	2.5	2583333333	7244444	NΔ	NΔ	NΔ	Γd55 NΔ
¹¹¹ Cd (214,439 nm)	451.5	43.1	31.5	37.6	100 + 2%	Pass	105 + 3%	Pass
¹⁴⁰ Ce	14.6	52.6	1104.9	722.7	115 ± 35%	Pass	100 2 0 10	
⁵⁹ Co (238.892 nm)	586.7	41.8	786.6	44.5	105 ± 4%	Pass	95±16%	Pass
⁵² Cr (267.716 nm)	207.5	449.4	1639.6	3824.7	111 ± 14%	Pass	110 ± 9%	Pass
¹³³ Cs	6.0	199.3	36.5	209.0	103 ± 1%	Pass		
⁶³ Cu (327.395 nm)	9460.7	9315.1	28900.0	14090.0	119 ± 55%	Pass	99 ± 22%	Pass
¹⁶³ Dy	1.0	4.0	90.9	42.4	112 ± 23%	Pass		
100Er	0.5	1.7	48.4	21.8	114 ± 24%	Pass		
¹⁰³ Eu	0.3	1.9	27.3	8.6	116 ± 24%	Pass		
³³ Fe (238.204 nm)	1/8888.9	42313.3	1104444.4	650133.3	NA	NA	NA	NA
1570d	4.0	13.0	2/7.5	324.9	10/±3%	Pass	110±7%	Pass
Go (200 426 pm)	1.2	5.1 4225.4	107.4	47.0	112 ± 23%	Pass	NA	NIA
¹⁷⁸ Hf	0.5	4333.4	42.9	16.9	NA 84 + 17%	Pass	INA	INA
²⁰² Ha	0.0	5.8	-12.5	21.2	106 + 2%	Pass		
¹⁶⁵ Ho	0.2	0.7	18.1	8.0	114 + 23%	Pass		
¹⁹¹ lr (224,268 nm)	1083.6	299.4	382.0	213.8	101 + 2%	Pass	108 + 19%	Pass
K (766.491 nm)	36576666.7	412522.2	35601111.1	4483111.1	NA	NA	NA	NA
¹³⁹ La	9.2	45.8	511.4	468.8	111 ± 27%	Pass		
⁷ Li (670.783 nm)	3658.3	1027.7	902.3	1206.2	106 ± 4%	Pass	117 ± 17%	Pass
¹⁷⁵ Lu	0.0	0.6	7.2	1.9	114 ± 24%	Pass		
Mg (280.270 nm)	2694888.9	841077.8	7852000.0	1583555.6	NA	NA	NA	NA
55 Mn	13724.4	46072.2	89086.7	98117.8	NA	NA	NA	NA
⁹⁵ Mo (202.032 nm)	309.8	396.3	1072.1	927.6	99 ± 2%	Pass	105 ± 4%	Pass
Na (589.592 nm)	1044666.7	15156.7	694644.4	149900.0	NA 0000	NA	NA	NA
146 N.d	2.0	0.3	100.4 E70.4	58.3	92 ± 9%	Pass		
⁶⁰ Ni	8/37	27.9	16/6 /	1250.2	103 ± 23%	Pass	110 + 0%	Pace
P (213 618 nm)	4000000 0	1757777 8	4879222.2	1117333 3	NΔ	NΔ	NA	NΔ
²⁰⁸ Pb (220.353 nm)	16.2	74.5	506.8	751.0	106 + 3%	Pass	95 + 21%	Pass
¹⁰⁵ Pd	0.7	0.8	6.3	0.9	97 ± 3%	Pass	96 ± 9%	Pass
¹⁴¹ Pr	1.9	7.6	132.7	85.4	108 ± 23%	Pass		
⁸⁵ Rb	6738.0	34775.8	15829.5	20362.2	94 ± 35%	Pass		
¹⁸⁵ Re	0.7	0.0	5.0	0.2	108 ± 3%	Pass		
¹⁰³ Rh	4.9	0.0	0.5	1.7	100 ± 3%	Pass		
S (180.669 nm)	2346777.8	842411.1	3976222.2	1065888.9	NA	NA	NA	NA
¹² 'Sb (206.834 nm)	2.9	2.6	17.4	55.7	95 ± 4%	Pass	102 ± 19%	Pass
⁷⁸ Se	303.1	14.9	4/.2	83.1	106 ± 4%	Pass		
147cm	1 5	5.0	120 5	55.0	INA 102 + 22%	Dace	INA	INA
¹¹⁸ Sn (189 925 nm)	18.3	2099.0	57.6	189.0	98 + 2%	Pass	104 + 6%	Pass
⁸⁸ Sr	36350.0	14511.1	214044.4	60907.8	108 + 68%	Pass	10120/0	1 000
²³² Th	1.8	19.1	93.8	509.7	106 ± 27%	Pass		
⁴⁷ Ti	393.7	1603.9	59519.9	12881.6	104 ± 3%	Pass		
²⁰⁵ TI	0.0	5.2	10.9	11.2	107 ± 2%	Pass		
¹⁶⁹ Tm	0.1	0.2	6.6	2.9	115 ± 24%	Pass		
²³⁸ U	22.1	3807.2	37.4	0.0	107 ± 3%	Pass		
⁵¹ V	104.0	21.6	2723.8	852.8	114 ± 23%	Pass		
¹⁸² W	9.5	1.7	5.9	31.1	96 ± 10%	Pass	102 ± 10%	Pass
1/2Yb	0.5	1.1	39.2	18.6	111 ± 23%	Pass		
~~∠n 90≂-	21503.0	22931.7	39538.3	18/88.4	NA	NA	NA 107 / 100:	NA
- <u>Z</u> n=3 renlicate samplo	digestion each	29.9	13/5.1	435./ a camples **/	94 I 13%	MEAM A 7 (0	$107 \pm 12\%$ 30-120% for	MIST
ertified values. NA ind	icates that spik	e levels were	too low (<5%) r	elative to the u	unspiked con	centration.	120/0/101	

Results and Discussion

Using PCA (Fig. 1-4), an un-supervised technique that displays samples based on similarities and differences in the measured variables, spice samples from different countries were separated fairly well based on country of origin and spice type.

Figure 1

- Overall significant differences between the elemental composition of the 13 different countries were found.
- 61 variables were found to discriminate significantly between the countries, and were subsequently used in the PCA (Figure 1).
- Along PCA 1, explaining 45.8% of the discrimination, Rb, Cs, Ge, Cd, Se, K, and P were among the most discriminating elements.
- Along PCA 2, explaining additional 9.6% of • the variability, the REEs, were among the most discriminating elements.

Figure 1. PCA of Spice samples based on country of origin. Figure 2

Differences between the elemental composition of the 21 different spices were found, shown in Figure 2.

Figure 2. PCA of Spice samples based on spice type, but labeled with country of origin. Figure 3

PCA shows the elemental composition • of different spices within one country. Separation is seen between 4 spices from Egypt.

Figure 3. PCA of different spice samples (basil, fennel, marjoram, and thyme) all from Egypt.

Another question we wanted to address in this study was to see if we could see a difference between the same spice type, from different countries. Figure 4 shows a PCA of rosemary from Morocco and Tunisia. Clear separation was observed.

Figure 4. PCA of Rosemary from 2 different countries (Morocco and Tunisia).

Conclusions

ICP-MS and ICP-OES can be used for the quantitative analysis of multiple elements in spice samples following acid digestion. The microwave-assisted sample preparation method resulted in excellent recovery results.

Commercial spices from 13 different countries show discrimination between elemental fingerprints.

While spices from different countries of origin were found to show a characteristic elemental pattern, further studies are needed to study this question, including a close monitoring of different spices from one country as well as the same spice from different countries.

Additional samples are needed to do additional studies. Obtaining spices with known origin is challenging.